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Abstract
A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-
detected local-field spectra fdiyS spin systems in powdered samples. The method, HETeronuclear
Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling fre-
guencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways.
The theory behind HETIE is presented along with experimental studies conducted on a powdered sample
of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural

determination in solid-state NMR are discussed.

PACS numbers:



I. INTRODUCTION

The determination of the molecular structure is central to our understanding of complex chemi-
cal systems. During the past century, structural techniques such as X-ray crystallography and more
recently liquid state NMR have tremendously advanced our comprehension of molecular processes
in nature. However, some systems such as the prion ptdteipider silg, amyloid fibril¢, and
frozen snapshots of protein foldihgre not amenable to liquid state NMR structural studies or
X-ray crystallographic techniques. In such systems where these otherwise robust techniques fall
short, solid-state NMR has become a valuable technique. Solid-state NMR utilizes interactions
such as dipole-dipole couplings and/or chemical shift anisotropy (CSA), which are present in
solids and are very sensitive to molecular structure. In particular, dipole-dipole couplings, due to
their dependence upon the distance between the interacting spins, have already provided useful
structural constraints for molecules in sofids

Although there have been many attempts to further develop the use of dipolar couplings for
use in structure determination, the progress of these methods has been impeded by the Zeeman
field-induced angular dependence of the dipolar frequencies, which hinders the extraction of the
desired distance information from the spectrum. In the presence of a large Zeeman field, taken to

be along the'—axis, the heteronuclear dipolar Hamiltonian betweer and.S spin is given by

HF

5(0L)% — 1
3 cos( 2L> (21,57)

(1)

wheref;, is the angle that the internuclear vectps makes with respect to the Zeeman field. The
dipolar coupling constant is given ly, = ‘Z{—ng wherev; and~g are the gyromagnetic ratios of
spin I and S respectively. For a powdered sample, the spectrum consists of a typical Pake pattern
for a pair dipole coupled spins [Figure 1(A)] since the eigenvalugg!¥fdepend upom; . This
anisotropic broadening limits resolution, lowers sensitivity, and complicates spectral assignments
of dipolar couplings in solids. One of the main objectives of developing a dipolar coupling based
structural technique is to remove the anisotropic nature of observed couplings.

Since the anisotropy of the dipolar frequencies in a powdered sample is due to the presence
of a large Zeeman field, many methods have been developed which either evolve the system in

zero-field'® or make the system appear to have evolved in zero-field through the application of



some multiple-pulse sequerice. The zero-field dipolar Hamiltonian is given by
HE = (f S —3(I-#15)(S - 715)) )

= Wp Z mAI 91570515)

m=—2

whereAZ> (05, ¢15) andTy’, are second rank spatial and spin tensors respectivelyfand;s)

are polar angles relating the spin quantization axig $o The eigenvalues off4" are independent

of 6;s and¢;s, which, even for a powdered sample, result in three sharp peaks [Figure 1(B)].
Tycko® 1! demonstrated for a homonuclear spin system that the dipolar Hamiltonian in high-

field can be manipulated by a series of rotor-synchronized radiofrequency (RF) pulses such that the

system appears to evolve under an effective Hamiltonian proportiod&ttaver the duration of

the pulse sequence. Although Tycko’s methodology has only been demonstrated for homonuclear

spin systems, it is possible to extend the method to create an isotropic zero-field Hamiltonian for

the heteronuclear cas& " can be rewritten as follows:

3cos?(fr) — 1

HpF = u)Df2IZSZ
_ ngA 3(00) (3128, T §+1-35)
= wpAL(0r) (TE + T)
_ %wD 3" C(1,0,2,0,2,0)F + C(2,0,2,0,0,0)Fy (3)
1=0,2,4

where theC'(2, 2,1, 0) are Clebsch-Gordon coefficients, afid are spherical tensors in the com-
bined space of spin and space. Note tﬁga(; and F;  describe different second rank tensors in
the combined space. The scalar tet,, is rotationally invariant to any combined rotation of
space and spin and hence is proportional to the zero-field HamiltaHigh,in Eq. (3). If a pulse
sequence is implemented which removes all the second and fourth rank tensors in the combined
space of spin and space froHET, then the zero-field Hamiltonian is obtained with a maximum
scaling factor given by\ax = 2/15. The resulting spectrum obtained would consist of three
sharp peaks at frequencie$iz and+3wp/(207) Hz. For anly.S spin system, the homonuclear
couplings between the | spins can in principle be removed without removing the heteronuclear
interactions since the | and S spins can be independently manipulated under high-field conditions.
Even though the anisotropy has been removed leading to sharp spectral features, the spectrum

under the zero-field Hamiltonian [Eq. (3)] for @RS system can still be quite difficult to interpret.
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Consider the scenario of dnS system where the dipole-dipole coupling between the | spins has
been removed, and, through some method, the zero-field dipolar Hamiltonian between the | and S
spins has been created. The resulting zero-field Hamiltonian is given by

2
HE = 3 [wdl ()T A5, (651, 1) + Wi (—1)"T52 AS2 (62, 652)]

m=—2
= Wil (352.@ - S ﬁ) + wP? <?>SZ]§ s fz)
= H é',:s*l + H 1%',:52 (4)
where a collinear geometry has been chosen for thé& system. The spec-

tra corresponding to evolution of the total magnetization of the spins,
1/337._xy.z Tracél; exp(itHE")I; exp(—itHE")| are shown in Figs. 2(A) and 2(C) for

two different sets of dipolar couplings. The spectra contain features that are not simply related
to the couplings. This is due to the fact that typically the zero-field couplings do not commute
with one another, i.e[H}'s,, Hj's,] # 0. The corresponding spectra therefore contain features
which are not linear in the number of spins, making interpretation difficult. This is in contrast
to standard proton-detected local field (PDLF) spectroscopy as shown in Figures 2(B) and 2(D).
Here the high-field Hamiltonian [Eq. (1)] was used for one crystallite orientéfipr= 0°). In the
absence of homonuclear dipolar couplings, the resulting spectra are linear in the number of spins,
with the splitting of each doublet equal to the effective heteronuclear coupling. In most PDLF
experiments, the protons are decoupled from one another and evolve under the heteronuclear
coupling to another nucleus, typically*4C. Most PDLF experiments have been implemented in
oriented phases where nonzero, motionally averaged dipolar couplings exist. This results in N
sharp doublets where the motionally averaged heteronuclear dipolar couplings can be interpreted
quite readily>'* Applications of PDLF spectra to solids have also been performed; however, the
resulting spectra consist of N overlapping Pake patterns, which due to the anisotropy in Eq. (1),
are difficult to interpref:16,

Recently an alternative method was proposed, called HOMonuclear Isotropic Evolution
(HOMIE), which produces isotropic dipolar spectra for pairs of homonuclear coupled spin
system$’. The HOMIE method works as follows: from Eq. (1) the observed dipolar frequen-
cies are proportional top (3 cos?(6) — 1). If another Hamiltonian is generated with frequencies
proportional towp, sin?(6), the anisotropic contribution to the combined signal is cancelled using

the relationsin?(#) + cos?(#) = 1. Unlike the ZFHF method, only the frequencies are combined
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in order to remove the anisotropy. Such problems as noncommuting couplings therefore do not
enter into the HOMIE methodology, and proton-detected local-field spectra, such as those shown
in Figure 2(B), should be possible to obtain in powdered samples.

In the following article, the HOMIE methodology is applied to heteronuclear spin systems in
order to produce isotropic dipolar spectra. The method, called HETeronuclear Isotropic Evolution
(HETIE), produces isotropic proton-detected local-field spectra. F@xaspin system, HETIE
generates N doublets with splittings proportional to the heteronuclear coupling. The basic theory
for HETIE is first presented, followed by a set of multiple-pulse sequences which can be used to
implement the HETIE method. Finally, the HETIE method is applied to a sample of ferrocene in

order to experimentally validate the method.

IIl. THEORY

The Hamiltonian for afy S spin system in the solid-state under sample rotation and RF radi-

ation is given by
Hsys = Hll(t) + HIS(t) + Hl(t) + HS@) + HII%F(t> + HgF(t) (5)

whereH,;(t) andH;s(t) are the homonuclear dipolar and heteronuclear isotropic scalar and dipo-
lar couplings.H,(t) and Hs(t) are the chemical shift and chemical shift anisotropy (CSA) Hamil-
tonians for thel and S spins respectively, anff;,.(t) and H2 () are the radiofrequency (RF)
Hamiltonians applied to thé and S spins respectively. The explicit forms of the various Hamil-

tonians are given by

H(t) = 3 wiglbs(0)] (3551 ' 1) ©)
His(t) = §(2ij[9js(t)] +J;) ISy (7)
His)(t) = iﬁj-“)wj(m¢j<t>u§<sz> (®)
Hyp (1) = w%? (8) [Ix (Sx) cos(@" ) (1)) + Iy (Sy) sin(¢" ) (1))] (9)

whered(t) and¢(¢) in Eg. (6) - Eq. (9) are the angles which relate the principal axis system
(PAS) of the various interactions ifisys to the laboratory frame defined by the Zeeman axis. The

anglesf(t) and¢(t), are shown to be time-dependent in order to take into account the possibility



of mechanical rotation of the sample. Under mechanical rotation at a frequenalout an
axis which makes an angle éf with respect to the Zeeman field, the spatial factorg7is,

wint(6(t), o(1)), transform as

Wlnt( Z d eXp _Imwrt>wlnt(0rot frs gbrot fr) (10)

m=—2
whered,%ho(&) is the reduced Wigner-rotation matrix element, afit6,.:. r,, ¢rot. ) represents
the spatial part of{, in the rotor frame. For example, the explicit form of eitlaég(eij(t)) or
wh (0;5(1)) is:
3cos?(0(t)) — 1
2
(3 COSz(emt_fr) - 1) (3 cos?(6,) — 1)

wp(0(t)) =

&
]

sin® (0,01, ) sin?(6,.) sin(2[w,t + Grot.f+])

_|_

QO W~

Sin(20,0r. ¢ ) sin(26,) sin(w,t + Grot. fr) (11)

As can be seen from Eq. (11)p(#(¢)) will contain terms proportional both tgn* (6, /) and
cos?(0,0r.). In the following, the subscripteot. fr will be dropped, and all angleg,and¢, will
be written in the rotor frame.

The basic ideas behind HETIE follow from the HOMIE methodAs in the HOMIE exper-
iments, rotor-synchronized multiple-pulse sequences are used in order to create certain average
Hamiltonian$®®which the system evolves under in order to obtain isotropic dipolar spectra. The
necessary Hamiltonians used in HETIE are (up to an overall constant)

-1 N
H — Z (kaBCOS (ZJS) + %k’) Ig(ZSZ (12)
J
HEVO — Zgw]b sin®(0;5) (exp(i2¢j5)ﬁr + exp(—i2¢j5)lf) 25, (13)
J
HPET = Z fwl sin(20;) (exp(:i:igbjg)fi + exp(ZFi@S)IZ) 25, (14)

j
The pulse sequences which generéteH5V°, and HPET are given in the next section. Since the
heteronuclear couplings between thepins commute, and the homonuclear interactions between

the I spins are assumed to have been removed, the evolution for/egmin can be calculated

independently from one another.



Starting withp(0) = > .

j a; I}, evolution underd for a timet gives

p(t) = exp(—itH)p(0) exp(itH)
- Zaj [ 17, cos (k(0;5)t) — 2513 sin (k(0;5)t)]

= D [p(t) + M) (15)

where
Py = Ijcos (k(05)t) (16)
pl = =251 sin (k(6;5)t) (17)

wherek(;s) = kw)(3cos?*(;5) — 1)/2 + J;k'/2. Each of the pathwaysy, and p;, can be
distinguished by their rotational property under a z-rotation, and each pathway will be considered

separately, which is depicted in Figure 3. Evolution for a timender HEV° gives the following:
po(t,7) = exp (—ITH"®) po(t) exp (iTH™°)
= Z a; I}, cos (k(0;5)t) cos (29(0,5)T)
j

—2a;S7 I cos (k(0;5)t) sin (29(0,5)7) cos(26;5)
—2a;S7 T cos (k(0;5)t) sin (2g(6;5)7) sin(2¢;5) (18)
p1(t,7) = exp (—iTHEVO) p1(t) exp (iTHEVO)
= Z —a;2S7 I sin (k(0;5)t) [cos® (g(0;5)7) — sin? (g(0;5)7) cos(4¢;s)]
J
+ ;25,1 sin (k(0;5)t) sin® (g(0;5)7) sin(4¢;s)
— a;T}sin (k(0;s)) sin (2g(0;5)7) cos(2¢;s) (19)
whereg(6;s) = gw} sin®(;5). After application of 750, the terms proportional té, are re-

moved by phase-cycling, leaving only the z-components of the density matrix. As before, the

z-magnetization at the end &f5V° is given by

(Iz(t, 7))o = Tr(po(t,7)Iz)

= Zaj cos (k(0;5)t) cos (2g(0;5)T) (20)
<[Z(t77-)>1 = Tr (pl(th)[Z)
= Zaj sin (k(0;5)t) sin (2g(6;5)7) cos(26;5) (21)
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The#d;s dependence in both Eq. (20) and Eq. (21) could be cancelled if
3
§kt = +2g71 (22)

Besides the trivial casé (= g = 0), both of these equations cannot be satisfied simultaneously so
only half of the signal can be made isotropic. However, if the dependence of Eq. (21) were
absent, Eq. (20) and Eq. (21) could be added or subtracted te@iifg0;5)t) cos(29(0;s)7) £
sin(k(;5)t) sin(2¢(0;s)7) = cos(k(0;s)t F 29(0;5)T), where the anisotropic portion of the signal
can be removed [Eq. (22)].

The ¢,;s dependence in Eq. (21) can be removed by evolution under the Hamiltohghs,
given in Eq. (14). The pathway originating fropg evolves for a timeper under HPET. Next a
filter is applied that only allows single-quantum coherences through as shown in Fig. 3. Finally
HPET is applied again for a timepet, the z-component of magnetization is measured to give the

corresponding signal of

SO = Tr [[Zpo(t, T, TDET)]
= — Zaj cos(k(0;5)t) cos(2g(8;5)7) sin®(2f (8;5) Toer) (23)

wheref(0;s) = fw} sin(20;s). Along the pathway originating from,, the system first evolves
for a timerper under HPET. Again a filter is applied that only allows single-quantum coherences
through as shown in Fig. 3. Finally/°ET (instead of /PET) is applied for a timerper, and the

z-component of magnetization is measured to give

51 = Tr []Zpl (t, T, TDET)]
= Z a;sin(k(0;5)t) sin(2g(6;5)7) sin?(2f (8;5)oer) cos(26;5) (24)

Assuming thep;s angles are uniformly distributed over the inter{@l2r| for eachd;s, Eq. (23)

and Eq. (24) can be combined after powder averaging ®eer follows:

1 21
a /0 dgb (So + 251) = — Z CLjCj(TDET) [COS(I{?(QjS)t + 2g(9j5)7')] (25)
J
Eg. (25) requires only one of the solutions to Eq. (22) to be satisfied, thus completely removing

the anisotropic portion of the signal. The corresponding signal intensities foy spjt’; (1oet),



are given by

Sl ) . o
a;C;(TpeT) = % li/o df;s sin(6;s) sin? (2fwf) sm(29js)7'DET)

a; — Jn(Z))
- 2|1 iV
2 3 )

n=—oo

(26)

whereZ; = 4fw{77DET, and.J,, are spherical bessel functions. The signal intensity is a maximum
whenZ; ~ 3.8 with C' =~ 0.24a;, andC — a;/6 asZ; — oo.

Ill. PULSE SEQUENCES

There exist two additional challenges in implementing the requisite Hamiltonians for the
HETIE experiments over that of the HOMIE experiments. First of all, the homonuclear dipole-
dipole interactions between tlespins (and the&' spins if there is more than one present) must be
removed, since the above theory deals only with a set of noninteracsipigps coupled to a single
S spin. The second requirement is that the chemical shift anisotropy (CSA) é¢fdpms must
also be removed. Since the heteronuclear dipolar coupling and the CSA btthes both have
second-rank spatial components and are linear in the spin opégatbey can only be separately
manipulated by also applying pulses on thepin.

Although there exist numerous ways to produce the necessary Hamiltonians for the HETIE
method, one set of rotor-synchronized pulse sequences is shown in Fig. 4. These sequences rep-
resents a hybrid of th& N* sequence8 with the C N sequenced. The details of the sequences
are given in Appendix A. The zeroth-order average Hamiltorifafts the sequences shown in
Figure 4 are [Fig. 4(A)], HEV° [Fig. 4(B)], HPET [Fig. 4(C)], andHPET [Fig. 4(D)]. It worth
pointing out that ther-pulse applied to th& spin is necessary in order to retain the heteronuclear
coupling but to remove the CSA and chemical shift of fhepins.

For the case wheat, = (15/2)w,, the zeroth-order average Hamiltonian for the sequence
shown in Fig. 4(A) is given byd [Eq. (12)], withk andk’ given by

O
3T
. 4 3cos?(6,) — 1
~ 3nm 2

_3cos*(0,) — 1

-k (27)



For wEY° = (27/4)w,, the sequence shown in Fig. 4(B) generates a zeroth-order Hamiltonian
given by HEVO [Eq. (13)], withg given by

. 9 0
g = cos (% — gCEVO) cos (m(evo) #\(x;)—”
= gsin®(6,) (28)

where(evo = w, /wEYO.

Finally, for wRE™ = (15/2)w,, the sequences shown in Figures 4(C) and 4(D), produce zeroth-

order Hamiltonians given respectively B§PET and HPET [Eq. (14)], with f given by
coS (%) sin(26,.) cos (% — %CDET) coS (%CDET)

- 7 [CBer — 1]
= fsin(26,) (29)

Note that in order to create the sanfielependence in boti/°" as in HPET, the order of the
compositel80° pulses had to be switched, as shown in Fig. 4(D).
To simplify the experiment, a solution can be found for a single rotor axis. Under this condition,

the evolution must satisfy

w - 2(0,) — 2(9) — _ .9 9
t—i—DT (kt(?)cos (2 )= Beos’(9) = 1) + 2g7 sin*(0,) sin (9))’
= (fiD;) = owp (30)

Whend, # 0°, t andT must both be a multiple of the rotor period. In additiégfPE™ must be
nonzero at the given rotor axis, which means solutions @&aand0° must be discarded due to
thesin(26,) dependence in Eq. (29). From Eq. (30), the rotor anjlethat the sample must be

spun at in order to remove the anisotropy is given by

P
f, = arccos —Slft 8‘?7— (31)
9kt = 8gT1

IV. EXPERIMENT

An experimental implementation of HETIE was tested on a natural abundance sample of fer-
rocene (Fe(€H5)2) which was doped with 2% by weight cobaltocene (C#{€),) in order to

shorten the T relaxtion time of the ferrocene protons from 60 s to 1 s. The sample was prepared
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by melting the two compounds together, and the resulting mixture was ground to a powder and
packed into a 4 mm MAS rotor. The experiment was performed'at eesonance frequency of
300.986 MHz, exactly on resonance for the protons of ferrocenet Forr, and using the se-
guences shown in Fig. 4, a rotor anglethf= 73.9° was used [Eq. (31)]. The angle was set
externally to 73.9+ 0.2° with the use of a protractor and a long rod which was exactly coaxial
with the spinning axis. ThéH spectrum obtained under the conditions of the HETIE experiment

is shown in Figure 5. ThéH linewidth is 5.6 kHz and is clearly not isotropic due to thé-'H

dipolar couplings and theH CSA which are only scaled when spinning at 15 kHa,at 73.9°.

The spectrometer used in these experiments was an Infinity-plus spectrometer (Varian Inc.,
Palo Alto, CA). A Chemagnetics (now Varian Inc., Palo Alto, CA) 4mm Apex-HX MAS probe
was used. The RF amplitudes for the sequence were calibrated by finding the maximum intensity
of the required}-pulse on proton. The-pulse on'*C was calibrated using cross-polarization
and observing where the cross-polarized signal’s phase was inverted after the application of a
fixed 7-pulse. The pulse sequence was rotor synchronized by controlling the spinning speed at
wy/(2m) = 15 kHz £3 Hz.

One of the difficulties with implementing the HETIE sequence was keeping the requirements
of RF and rotor synchronization within experimental limitations. The specific experimental limi-
tations that had to be dealt with were the fact that the probe could only spin the sample up to 20
kHz, and the maximum achievable RF power wag/(27)= 150 kHz. In the experiments used in
the HETIE sequence, the spinning speed usually set the ceiling for the maximum RF power used
in the experiment. Although an RF power of 150 kHz could be produced, the RF pulse quality
diminished with increasing RF power. For this reason, better performance was often achieved at

RF powers of approximately 100 kHz, which was the RF used in the HETIE experiments below.

V. RESULTS AND DISCUSSION

The sequences shown in Fig. 4 foe= 7 yields a scaling factor of = 0.0817 [Eq. (30)].
Although ferrocene is an ideal sample due to the scaled dipolar couplings and high molecular
symmetry, there exist more than 30 different structures in the Cambridge Structure Database with
C-H bond lengths varying in the range of 0.99 to #1 We have restricted our analysis of the
bond lengths to more modern neutron diffraction studies where the diffraction method has a bet-

ter chance of detecting the proton positions. In an attempt to predict the expected values for the
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observed scaled couplings, the bond lengths were taken from the neutron structure with the best
experimental parametérs In these studies, the complex Cp motions were taken into account in
the diffraction analysis. This analysis gave a variable interpretation of the carbon-proton internu-
clear distances (standard deviation = 02[)21‘0r room temperature samples of ferrocene. We used

the structure found in the Cambridge Structure Database (CSBtFEEROCE29) which reports

C-H distances of 1.04, 2.18, and 3.28within the Cp ring. In addition to the work by Brock

et al??, there has been much discussion on the proper interpretation of the ferrocene diffraction
dat&?, and we hope that NMR might be able to provide some additional insight.

The only C-H couplings considered are those located within the Cp ring of the ferrocene, since
the other protons are much farther away with couplings reduced by the fast motion of the Cp ring.
The ring motion also affects the observable couplings since the motional timescale is much greater
than that of the coupling strengths; the molecular motion scales the observed couplings by a factor
P[cos(#)], whered is the angle between the C-H vector and the axis of fast motion. For the case
of rotation about the Cp axis, the observed couplings are scalédlbys(90°)] = —1/2.

It is important to consider the uncertainties in the C-H distance when comparing the theoretical
and experimental dipolar coupling results. Using the neutron diffractiorf“data the associated
standard deviation from the different analyses of the same diffraction data, we expect the unique
observed dipolar couplings of room temperature ferrocene between a Si@gbm the ring and
the protons as scaled by the HETIE experiment to be 10282, 111.5+12, 33+2.4 Hz. The
error in these scaled couplings may seem quite large; howevejg tlependence of the coupling
amplifies errors at small distances.

These scaled coupling values are determined from the ideal scaling tactob,0817, which
lacks any inclusion of interactions or higher-order terms in the average Hamiltonian which might
degrade the performance of the sequence in addition to possible pulse and phase errors. Exact
numerical simulations were performed on a three spify, system, where only the two closest
protons to thé3C in the Cp ring were considered. The simulations shown in Fig. 7 were per-
formed with a weak homonuclear interaction (A) without and (B) with a proton CSA. As is shown
in Figure 7(A), the peaks are isotropic and at the correct frequencies (as determined from the scal-
ing factor,c = 0.0817). It should be noted that since the spectral range is determined by the
spinning speed divided by the number of evolution units per dwell (15/8 kHz), the largest C-H
coupling is actually under-sampled and is effectively folded in from the edges of the spectrum.

This is an unfortunate artifact; however it is necessary given our maximum RF restrictions and
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spinning speeds. Smaller couplings, which are expected to be of greatest interest for structure
determinations, will typically be within the spectral window given by the current experimental
constraints.

Figure 7(B) shows the results of a simulation on a more realistic sample with non-zero Euler
angles relating the axes of the interactions, as well as a 5 kHz CSA on each of the protons. Fig.
7(B) indicates that the weaker coupling peaks are virtually unaffected while the larger coupling
peaks have some additional broadening which we attribute to a higher-order cross-term in the av-
erage Hamiltonian between the CSA and the heteronuclear dipolar coupling, since the underlying
heteronuclear dipolar coupling is significantly larger. The CSA values used in Fig. 7(B) is in ex-
cess of what has previously been seen for the CSA of protons in ferfdeeittea Ao(= o — o))
of -6.5+0.1 ppm. In addition, further numerical simulations using typical values for heteronuclear
scalar J couplings showed that the signal is not sensitive to J couplings, even with the inclusion of
the CSA.

Finally, Figure 8 shows a comparison between (A) an ideal simulation and (B) the actual ex-
perimental signal. The first thing to note is that the spectrum of Figure 8 (B) is a power spectrum
(|f(w)|*) which is necessary to facilitate the comparison with the simulation, since the signal to
noise was quite low. Secondly, there appears to be a large zero peak in the experimental spectrum
which has been truncated so that the peaks of interest are more clearly displayed. The origin of
this peak is somewhat uncertain; however we suspect that it is related to the signal decay caused
by the accumulation of pulse and phase errors, but this requires further investigation.

The largest coupling peaks in the experimental spectrum appear to be close to the correct fre-
guencies (minus the spectral folding) at 168A.0 Hz, which corresponds to a bond distance of
1.019 £ 0.003A. The next largest coupling peaks occur at #4710 Hz, which correspond to a
distance of1.99 + 0.0414, which is different from the neutron diffraction distancef84 as
shown in Figure 8. The smallest C-H coupling peak can not be observed unless the large zero
peak is deconvolved, which is shown in Fig. 9. The peaks roughly occur att3h34z, which
corresponds to a distance 862 + 0.604, which is within the range of the neutron diffraction
distance 08.28A.

The HETIE method can provide a valuable complement to existing methods in solid-state struc-
ture determination. Consider determining the structure of;&nhsystem as shown in Figure 10.

The HETIE method provides information about the heteronuclear bond distances in a powdered

sample (D1S, D2S, and D3S in Figure 10). If either the angles between the various heteronu-
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clear dipolar vectors could be determindgh ( 6-3, 613) or the homonuclear distances;(DD;3,

D»s3), then the structure of the system would be determined. Determining all the homonuclear dis-
tances for an abundant spin species suchias problematic in solids, since extracting the dipolar
couplings becomes almost impossible due to the increasing spectral complexity with increasing
number of | spins. However, there exists a variety of methods which in principle could provide the
angles between the heteronuclear dipolar vectors by performing either dipole-dipole correlation
experiments or dipole-CSA correlatigAig’. In addition, coupling the HETIE method with Dy-
namic Angle Spinning (DAS) technigusan not only improve the scaling factoof the HETIE
experiment, but also correlations between the isotropic heteronuclear couplings and the isotropic
chemical shifts could be obtained (Appendix B). In the future, application of HETIE along with
these correlation techniques may help to solve structural problems in the solid-state which are not

amenable to current methodologies.

VI. CONCLUSIONS

A new methodology, HETeronuclear Isotropic Evolution (HETIE), was presented which pro-
duces isotropic proton-detected local-field spectra of powdered samples. HETIE works by remov-
ing the anisotropic portion of the heteronuclear dipolar coupling frequency by having the system
evolve under carefully designed Hamiltonians and evolution pathways. In this paper, HETIE was
shown both theoretically and experimentally to produce linear, isotropic, proton-detected local
field spectra. The heteronuclear coupling values as determined by the HETIE experiment on a
ferrocene sample actually agree quite well with the ‘known structure’, given the uncertainties in
the interpretation of ferrocene diffraction studies. Thus far we have made only a single study, but
with additional refinement of the HETIE sequence, we anticipate this method may yield valuable

structural insight into many solid-state systems.
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APPENDIX A: PULSE SEQUENCE DETAILS

The Hamiltonian for arly S under mechanical rotation and RF irradiation is given by

Hsys = Hyp(t) + Hys(t) + Hp(t) + Hs(t) + Hpp(t)
= Hinr(t) + Hiyp(t) (A1)

where the equations and forms for the various term&4gp are given in Egs. (6)-(9). The basic
Hamiltonians needed for the HETIE method require finding a partidiifg(¢) such that the spin
system appears to evolve, in some averaged sense, Hriéey. (12)], H5V° [Eq. (13)], andH PET
[Eg. (14)]. Transforming into an interaction frame definedmy;(¢), the propagator/(t,, t,),

can be written as

t1
Ulty, tg) = Texp (—i/ dt’Hsys(t’))

to

= V(t1,to)T exp (—i / ! dt’ﬁlm(t’)) (A2)
whereT is the Dyson time ordering operator and )
V(ty,tg) = Texp <—i/tl dt’HgF(t’)) (A3)
to
Hir(t) = Vit to) [Hp(t) + His(t) + Hi(t) + Hg(t)] V (L, to) (Ad)

For short enough times, the propagator in Eq. (A2) can be approximated as
Uty to) = V(ty,to) exp (—itH) (A5)
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wheret = t, — t,, andH is the average Hamiltoni&hover the time interval. H is given by
7=Sa" (A6)
n=0

(n)

whereH " is the rth order average Hamiltonian. The zerotﬁ(f)) and first-orde(ﬁ(l)) average

Hamiltonians are explicitly given by

— 1 f ! Iy !

% = ; / dt' Hinr (1) (A7)
to

_(1) I t t, ’ n | s / 5 "

T = __/ / dt dt |:H|NT(t ), Hint(t )} (A8)
2t Joy St

In the following, the aim will be to create zeroth-order average Hamiltoniﬁi@,, which are
equal toH, HEY°, and HPET,
The set of pulse sequences that were used to ciéaté='°, and HPET while removing both
the CSA and homonuclear dipolar interactions are shown in Fig. 4. Each of these pulse sequences

are composed of small blocks given by

[(m/2)x = (7/2)y = (7/2)x]4 [(7/2)y — (7/2)x — (7/2)y],, (A9)
The sequence in Eg. (A9) has the advantage of being able to remove the homonuclear dipolar

coupling between thé sping®. The propagator for the block in Eq. (A9) can be approximated by

U(t) ~ exp (=2i[p1 — ¢)Iz) exp(—iteH ) (A10)
wheret.,. = [37/(wgrr)] is the total time for the block of pulses, aifl is the zeroth-order
average Hamiltonian over the ting., calculated using Eq. (A7)’_J(O) can be written as

ZZZ >3 T, (A1)

n  m k=—mp=—n

where A} , are spatial tensors of rank, and7} , are spin tensors or rankin the I space (i.e.,
both I, and,S are first rank tensors in théspace, whereadl}, I}, — I' - I’ is a second rank
tensor in thel space). The sum overdenotes different terms iir” with the same values for
k, p, m, andn (for examplew(.g, A} o1} andwp! AS4 1S, each havet = 0, p = 0, m = 2, and
n = 1).

The coefficients);’’ 1 (in front of terms likel/ and’.S) are given by
3 . T
bk = —dio(6,)07 exp(Fig) exp (£ ) (exp(Filo — én))vl — 1)

m _ mk( Tk 2
X Cos (4 F T) cos ( 5 ) 5RO — 1] (Al12)
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Wheredi,o(er) is the reduced Wigner matrix elemef,is the angle that the rotor axis makes with
respect to the Zeeman field = w, /wrr, andv, = exp[i(k(r)/2]. The coefficient@i’j:1 (in front

of terms likel, I, + I}.I}) are given by

bty = 242 0(0,) exp(Fio)u; exp (1] ) [vf exp(Filo - én]) + 1]

e Tk 1
X COS<4:|: 5 )Cos( 1 )w[4—(k<)2] (A13)

Note that when} exp(£i[¢p—¢1]) = 1, b7}, = Owhile by | # 0, and when? exp(Fi[p—¢1]) =
—1, by, # 0while b}, = 0. This is due to the fact that the unitsr/2) x (7/2)y (7/2)x] and
[(m/2)y(7/2) x(7/2)y] act like composité80° pulse (with an additional Z rotation). Undet 80°

X pulse,I — I, while I, I} + ILT}, — —(1;1; + Iglé), hence the ability of these sequences

to distinguish between odd and even ranked spin tensors. This is part of the basis v the

sequences which have been used extensively in solid-state?NMBte also thaby';, = b5, = 0

for k = 0,+£1, andbgjg = 0, so that these sequences are also compensated for isotropic chemical

shifts and théfglvj0 component of the homonuclear dipolar interaction in the RF interaction frame.
The extra Z rotation of phas& = 2[¢; — ¢] in Eq. (A10) propagates throughout the sequence

by repeatedly applying the basic unit while the sample is being mechanically rotated. Defining the

operator for a rotation of an angfeabout thez-axis asP(¢) = exp [—i¢I|, the propagator over

N applications of the basic unit is given by

U(NTeye,0) = T H Pz (A)exp (—iTcycﬁf)> (A14)

where )

is the zeroth-order average Hamiltonian over thé application of the sequence in

Eg. (A9). Since the sample is being mechanically rotated during the pulse seqla_ﬁ(ﬁcis

not equal tof"” in Eqg. (All), since the coefficients of the spatial tensor&/jgr (¢) are time-
dependent [Eq. (10)] and the length of the pulse sequence in Eq. (A9) is in general not equal to a

multiple of the rotor periodﬁgj) is given by
=222 >3 W AT (A15)
n m k=—mp=—n

wherev;, = exp(ikw,.,.) With 7., being the time of the given pulse sequence (in the case of Eq.
(A9), Teye = 3T /wrp).
If NA = 2mwq wheregq is some integer, an average Hamiltonian for the whole propagator,
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U(NT.e,0) in EQ. (A14), can be calculated as follows:

U(N7eye, 0) & Py (NA)T 1N"[ exp | ~i7ye P ([w = 1A) T, Py (fw = 1]4)|

w=1

~=(0)
A exp (—iNTCyCH ) (Al16)

~=(0) . . . ..
whereH s the zeroth-order average Hamiltonian over the whole sequence, which is given by

T = S Pl (- 1A EYP (- 114)

w
NTeye et

=ZZZZ > A

n  m k=—mp=—n

N-1

Z exp (Iw[pA + kw, Teye) (A17)

For A = 27v/N andw, 7., = 27n/N, only those terms of the form] T,  with k andp
satisfying

kn+pv = NZ (A18)

whereZ is an integer, will be present to lowest order, since

N-1
% Z exp (I%) =1 (A19)

if @ = NZ with Z an integer and equals zero in all other cases. This is basis far' ijge
sequences,

The first-half of the sequence (before t#° pulse on thes spin) in Figure 4(A) is comprised
of two blocks of pulses of the form given in Eq. (A9) with= 7 and¢, = 0, which are phase
shifted by90° from each other. This unit is then repeated five times which makes, according to Eq.
(A18), the whole sequence formally equwalent’té2 wheanF = (15/2)w,. In this case, only
those terms of the form;, , 77 ) will contribute toH . As discussed earlier, for sequences of
the form of Eq. (A9), the coeﬁ|0|enf$’fo for terms of the formA], 77, are zero and thus do not
contribute toﬁ(m. Additionally, because of the concatenation of two sequences which are phase
shifted byr /2 from each other, terms of the forrj, 75 ., will cancel and thus not contribute to
ﬁm). Finally sinceexp(—i(¢, — ¢)) = —1, terms of the formA;, ;77 ., also will not contribute
[Eq. (A13)], leaving only terms of only of the form;, 77 ., to contribute toﬁm) [Eq. (A12)],

which includes terms arising from both the CSA ) and heteronuclear couplings.(S7). In
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order to distinguish between these two contributions, the sequence is repeated again with all the
phases of the pulses shifted 180° in addition to applying d80° pulse to the5 spin. This has the

effect of refocussing the CSA terms but keeping the heteronuclear coupling terms. Such a pulse
sequence motif is used in all the sequences shown in Figure 4. The average Hamiltonian for the
sequence in Figure 4(A) iH [Eq. (12)].

The sequence shown in Figure 4(B) is formally equivalent 693 sequence wheapr =
(27/4)w,, which again lets through terms of the forAj ., 7 ., from Eq. (A18) (the terms of
the form A7, 77 , do not contribute due to the basic pulse blocks [Eq. (A9)]). Due to Eq. (Al2)
and Eqg. (A13), only terms of the form; ., 77 ., contribute. The average Hamiltonian for the
sequence in Figure 4(B) BEV° [Eq. (13)].

Finally, the sequences shown in Figure 4(C) [formally equivaleritig] and 4(D) [formally
equivalent toC'52,] generate average Hamiltoniad&’E"™ and HPET respectively whemvgyr =
(15/2)w,. Both sequenceS§’5; andC53, let through terms of the form;, 7'  [EqQ. (A18)], but
the basic blocks [Eg. (A9)] prevent such terms from contributin&%. Using Eq. (A18), the
sequence in Fig. 4(C) also lets through terms of the fdim, 75 ., (which are removed removed
by concatenating two pulse sequence blocks which are phase shifi@d igfative to each other)
andA; T ,,. Due to Eq. (Al2) and Eq. (A13), only terms of the forty ., 77 ., contribute
to ﬁw). Using Eq. (A18), the sequence in Fig. 4(D) lets through terms of the f&ym,75 .,

(which are removed removed by concatenating two pulse sequence blocks which are phase shifted

by 90° relative to each other) and;, ,, 7 Due to Eq. (A12) and Eq. (Al13), only terms of

) ~(0)
the form A; ., 77 -, contribute toH . Note that the order of the two composit&)° pulses are

Fl°

switched in the sequence in Figure 4(D) relative to those in Figure 4(C). This is to ensure that the

scaling factorf [Eq. (29)] is the same for both sequences.

APPENDIX B: IDEAL HETIE SEQUENCE WITH OPTIMAL SCALING FACTOR ¢

In trying to obtain the maximal scaling factet, all sequences used to generate the various
Hamiltonians {, HEV°, and HPET) are assumed to be comprised of delta pulses (i.e., unlimited
RF power can be used). Additionally, the sample is allowed to switch between different rotor
angles during the course of the experiment. The optimal sequences to prddanak EV° for a

single/S spin system will now be presented.
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While spinning the sample &t = 0° for a total timet = 4Nt', the sequence

(/201 = (£ = (W§(m)F =2 = (MEm)E =) = (7/2)} 5 (B1)

produces an average Hamiltonidh, with £ = £’ = 1 [Eq. (12)].
HEVO [Eq. (13)] can be created by a variety of rotor-synchronized RF pulse sequences, each
resulting in a different scaling factay, A maximal scaling can be achieved @by applying N,

phase-incremented, rotor-synchronized units, with theukit given by

[(7/2)0 = 7a = (7/2)xlo, (B2)

wherer; = 27 /(w,.N) and¢, = 47 /N. The sequence in Eq. (B2) is then repeated with an extra

7 phase shifted added to the pulses and is sandwiched betweers@vpulses on the5 spin.

This helps to refocus the CSA terms while keeping the heteronuclear couplings to lowest order.
Spinning the rotor at an angle and applying the above sequence creates an average Hamiltonian
given by HEV® with ¢ given by

3Nsin*(6,) . (2«
g = ?)2—7TSIH <ﬁ) (B3)

The factorg is maximal ford, = 90°. The total time required to creafé®V® using the sequence
described in Eq. (B2) is = 2mn/w,, wherem is some integer due to the fact thHdE'© must be
created over some integer multiple of rotor periods. In the limit fat> oo, Eq. (B3) shows that
g — 3/16 for 6, = 90°.

With the above optimal sequences, the question of how to obtain the maximum dipolar scaling,
o, for a single IS spin pair can now be addressed. Consider the following sequence: the sample
first rotates along, = 0° for a timet while the the sequence in Eq. (B1) is applied. The axis of
rotation is then changed # = 90° while the sequence in Eq. (B2) is applied (with — o)
for a timer, which is some multiple of a rotor period. From Eq. (22), the anisotropic component
of the heteronuclear dipole interaction can be removed whent+4g7/3. The axis of rotation
is then changed to the magic-angle,= cos~'(1/+/3), for application of HPF”. Note that at
the magic-angle, high-resolution chemical shift spectra can be obtained, so a possible chemical-
shift/heteronuclear coupling correlation experiment can be performed. 4siag3/16 gives

7 = 4t and gives a dipolar scaling factar, of

wp (1 2 .9 _
owp = (5(3 cos“(f) — 1) + 2g7 sin (9)) = = (B4)
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which is the theoretical maximum scaling factor for creating the zero-field Hamiltonian for a
heteronuclear spin pair.

The above result is purely hypothetical since the lifdit— oo is not realistic. In addition,
for a system off spins coupled to a singlé spin, the obtainable scaling factor is reduced due
to any homonuclear decoupling method used since some of the experiment has to be performed
away from the magic angle. It can be imagined that an extremely large RF is used to decouple the
I spins from each other on a faster time scale than that used to é¢feate’©, and H°E". In this
scenario, the scaling factor would be reduced by at least a facighds, since that is the largest

scaling factor for any pure multiple-pulse decoupling sequence.
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4000 -4000

FIG. 1: Simulated spectra for a heteronuclear dipole coupled spin system under (A) high-field and (B) zero-
field conditions. A dipolar coupling afp/(27) = 2000 Hz was used. (A) Pake pattern for a heteronuclear
spin system, where the distribution in frequencies is due to the anisotropfibfin Eq. (1). (B) The

zero-field consists of three sharp lines at frequencies at 0 HZa000 Hz.
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FIG. 2: Comparison of zero-field proton-detected local field spectroscopy with high-field proton-detected

local field spectroscopy for two sets of couplings. In (A) and (&} /(27) = 300 Hz andw?!/(27) = 700

Hz in (C) and (D).w;%2 (27) = 1000 Hz in all cases. The zero-field Hamiltonian [Eq. (4)] was used in

(A) and (C), and the spectra corresponding to the evolution of the katelgnetization, with intensity in

arbitrary units (A.U.). In (B) and (D), a high-field Hamiltonial] = 2wy, 112 + 2wy, *IL T3, for a

single crystallite orientatiord{, = 0°) was used to calculate the evolution of transverse magnetization of

thel spins.
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FIG. 3: The basic procedure in order to obtain isotropic proton-detected local field spectra. An initial
density matrix,p(0) = Zj ajlg evolves under [Eg. (12)] to give a z-magnetization (Z) terrfyo),

and single-quantum (SQ) terny;). Both of these terms then evolve undéF¥® [Eq. (13)], and only

the z-components are kept. Next, evolution occurs fyai, 7) andp; (¢, 7) under HPET [Eq. (14)] into

SQ coherence. The SQ coherences are then converted back into z-magnetization for detection, using either

HPET for the pathway originating from, or HPET for the pathway originating from; .
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FIG. 4: Basic pulse sequences used to créat&/=V°, HPET needed for HETIE. (A)The pulse sequence
which creates H [Eqg. (12)] to lowest order and the corresponding propagatordgit)= (15/2)w,, and
the total time step for propagator U(t)tis= 87 /w,.. (B) The pulse sequence which creaf&s’© [Eq. (13)]

to lowest order and the corresponding propagdt6/©(r), with wrr = (27/4)w, andt = 87 /w,. (C)
and (D) are the pulse sequences and corresponding propagatéisfband HPET [Eq. (14)] respectively

with WRF = (15/2)0)7«.
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FIG. 5: 300.986 MHZH NMR spectrum of FeCpspinning 15 kHz a#, =73.9
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EVO DET DET

(), 2" TN E)ERET) G

kL

H Z-filter Zfilter
[ ¢
. ‘ t ‘ T ‘ . "DET | TDET |
Times: ‘ ‘ ‘ ‘ ‘ |
| 73.9° |
Rotor Angle: ‘ __,——Jre, ‘
M receiver
experiment | (deg) (deg) phase
X4 0 0 1 -1
Xo 0 180 1 1
Yi | 180 0 1 1
Yo | 180 180 1 1
2°%3 | 0 0 -1 1
2'%X4 | O 180 -1 -1
2*Y3 180 0 -1 -1
2*Yyq 180 180 -1 1

FIG. 6: Actual experiments performed for the demonstration of HETIE methodology to obtain isotropic
proton-detected local-field spectra. The pulse sequence, along with the corresponding phase cycle, is pre-
sented. Definitions df/, UEVC, andUPET are given in Fig. 4, which include the seriesi8° pulses which

are not explicitly shown in this figure. The pointsipare parameterized Bn + m, n = {0,1,2,...}

andm = 1 for odd numbered points ané = 0 for even numbered points. For the above experiment,

t =7 = (2n+ m) * 167 /w,. The first four experiments correspond to evolution alppén Fig. 3. The

last four experiments correspond to evolution algngn Fig. 3. The last four experiments have to be

performed twice as required from Eq. (25).
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(A)
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z

(B)

J\m
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FIG. 7: Simulation of the performance of the HETIE pulse sequence (Figure 6) using the SIMPSON
prograntt. The heteronuclear dipolar couplingsw}?/(27) = 13.425 kHz andw’}/(27) = 1.458 kHz

were used in both simulations, and a homonuclear dipolar couplingjgf27) = 1 kHz was used. (A)

Ideal CH; spin system in the absence of CSA. (B) non-ideal spin system with the CSA of 5 kHz for each

proton.
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(- m
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z

FIG. 8: HETIE experiment and simulation comparison for FeQ@\) The simulation uses the couplings
as determined from diffraction studf@s (B) The experimental power spectrum was acquired at 300MHz.

6, = 73.9° andw, /(2m) = 15 kHz.
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(A) \

750 500 250 0 -250 -500 -750
Hz

FIG. 9: HETIE experiment and simulation comparison for FeC{\) The simulation is the same as in
Figure 8. (B) Thedeconvolvedxperimental power spectrum was acquired at 300M#iz= 73.9° and

wy/(271) = 15 kHz.
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FIG. 10: AnI3S system. HETIE, in principle, can determine D1S, D2S, and D3S. In order to fully deter-
mine the structure, either the relative angigs (613, andfs3) or the homonuclear distances;{DD;3, and

D,3) need to be determined.
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